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Abstract

Experimental study was carried out on the temperature profile of natural convection of air in a 50 mm cube with the

temperature difference of 30 K between two opposing vertical walls. The objective is to investigate the essential aspect of

heat transfer in the wide range of Rayleigh number (Ra) by lowering the pressure. The pressure was varied from 5.40

kPa (40.5 mmHg) to 99.99 kPa (750.0 mmHg). These correspond to Ra ¼ 1:04� 103 to 3.56� 105. The results show

that the temperature distribution and Nusselt number approach those of conduction state as the pressure decreases.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In many problems of industrial engineering, the en-

hancement of heat transfer is crucial from the viewpoint

of heat removal. However, the minimization of heat

transfer is also important in the storage of energy, in-

sulation of fluid and materials (e.g., transportation of

high temperature fluid without heat loss), and so on [1–

3].

Using the characteristic length, apparatus condition

and fluid properties of a problem, heat transfer is related

to the Rayleigh number (Ra) which is the product of the

Prandtl number (Pr) andGrashof number (Gr). The effect
of convection on heat transfer is expressed with the

Nusselt number (Nu). Small Ra represents small amount

of heat transfer, or repression of energy transfer. The

weak convection results in Nu near unity.

There exist many studies on numerical calculation of

natural convection [4–7]. Though numerical study on

the heat transfer under small Ra is not difficult to per-
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form, experiments with such conditions are difficult to

pursue. This is due to the fact that the small Ra under

the realistic experimental conditions requires small

temperature difference or small characteristic length.

For example, there are a number of experimental studies

which deal with the heat transfer aspect in the wide

range of Ra including the critical Ra for natural con-

vection problem of fluid heated from below (Rayleigh–

B�eenard convection problem). However, the depth of

fluid is required to be maintained of the order of 1 mm

to attain the critical Ra [8,9].

Though an experiment on natural convection of a

small Ra gives an essential aspect, this requires unreal-

istic characteristic length and temperature difference.

Consequently, it is quite difficult to carry out such ex-

periments, visualize flow pattern and measure some

properties such as temperature. On the other hand, if a

gaseous fluid is used, even a small Ra can be also

achieved with realistic conditions by the reduction of

pressure which is equivalent to decrease its density.

However, there seems no study which investigates on the

essential aspect of natural convection in an enclosure

from the classical and basic point of view using dimen-

sionless parameters. Accordingly, the basic experimental

study on natural convection of a small Ra is considered
ed.
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Nomenclature

Cp specific heat at constant pressure

(J kg�1 K�1)

d diameter of a molecule (m)

g gravitational acceleration (m s�2)

Gr Grashof number, Gr ¼ gbL3Dh=m2

k Boltzmann constant (JK�1), k ¼ 1:38�
10�23 (JK�1)

Kn Knudsen number, Kn ¼ k=L
L characteristic length (m), one side length of

a cube in the present study

Nu Nusselt number, Nu ¼ �ðoH=oZÞconv
p pressure (Pa)

Pr Prandtl number, Pr ¼ m=a
Ra Rayleigh number, Ra ¼ PrGr
x; y; z Cartesian coordinate

X ; Y ; Z dimensionless Cartesian coordinate,

ðX ; Y ; ZÞ ¼ ðx; y; zÞ=L
a thermal diffusivity (m2 s�1), a ¼ j=ðqCpÞ

b thermal expansion coefficient (K�1)

h temperature (K)

Dh temperature difference (K), Dh ¼ hh � hc

hav average temperature (K), hav ¼ ðhh þ hcÞ=2
H normalized temperature, H ¼ ðh � hcÞ=Dh
j thermal conductivity (J s�1 m�1 K�1)

k molecular mean free path (m)

l viscosity (kgm�1 s�1)

m kinematic viscosity (m2 s�1), m ¼ l=q
q density (kgm�3)

Subscripts

air air

av average

c cold wall

cond conduction

conv convection

h hot wall

Fig. 1. Experimental apparatus system. The test section is a 50

mm cube constructed of four adiabatic transparent acrylic resin

plates of 25 mm thick, and the hot and cold copper plates of 5

mm thick. These two plates are vertically opposing, and are

maintained isothermally constant at 313.15 and 283.15 K by
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valuable to be investigated on. Especially, this kind of

studies may serve in the fields encountered in semicon-

ductor technology such as chemical vapor deposition

process [10,11], and in the low pressure systems en-

countered in aerospace and vacuum engineering. As a

gaseous medium, air is adopted in the present study.

The aim of this study is to investigate the essential

aspect of natural convection heat transfer in a cube with

the temperature difference imposed between two op-

posing vertical walls in the wide range of Ra by de-

creasing the pressure of a gas. The evidence of continuity

of the used gas is also briefly illustrated, since this gives

the reliability of the measured temperature in the present

experiment. In this problem, convections occur for any

Rayleigh number which is different from the Rayleigh–

B�eenard convection.
circulating hot and cold water, respectively.
2. Experimental facility and procedure

Fig. 1 shows the experimental system in the present

study. The test section is a cube with effective one side

length of 50 mm. This is constructed from two opposing

vertical copper plates of 5 mm thick, and the other four

insulated plates of a transparent acrylic resin whose

thickness is 25 mm. The effective inside volume is equal

to 1.25� 105 mm3 and air is filled in this domain.

Temperature difference is imposed through these two

copper plates, and the temperatures of these plates were

maintained isothermally constant with thermostats by

circulating water and an electronic controller. The

temperatures of hot and cold plates were set at
hh ¼ 313:15 K (40 �C) and hc ¼ 283:15 K (10 �C), re-
spectively. Accordingly, the temperature difference was

equal to Dh ¼ 30 K. Further, the averaged temperature

hav ¼ ðhh þ hcÞ=2 was kept at 298.15 K (25 �C). The

ambient temperature was also set at 298.15 K carefully

to minimize heat loss from the test section. The inside

pressure was measured by a diaphragm-type pressure

sensor. In the present study, the pressure was changed

from 5.40 kPa (40.5 mmHg) to 99.99 kPa (750.0 mmHg)

by use of a vacuum pump.

All temperatures mentioned above were measured

carefully with K-type (chromel–alumel) thermocouples of

0.18 mm diameter protected by sheath whose outer dia-



Fig. 2. Details of test section. The values in brackets are nor-

malized coordinates ðX ; Y ;ZÞ of measuring points of thermo-

couples. 1 corresponds to 50 mm in the dimensional system.
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Fig. 3. Dependence of normalized temperature on pressure.
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Fig. 4. Distribution of normalized temperature at each pres-

sure.
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meter is 1 mm, and these were calibrated by a primary

standard thermometer in the present experimental range.

The surface temperatures of copper plates were ascer-

tained to distribute uniformly constant in another exper-

iment by pasting the thermocouples on them with metal

tape. The temperature was measured and recorded within

�0.05 K accuracy by an electronic recorder. The pressure

sensor was calibrated by a reference sensor, and the mea-

sured pressure is within�33 Pa (�0.25 mmHg) accuracy.

The temperatures around the test section were measured

and controlled with thermocouples and an electronic

thermostat device. The experimental conditions were kept

as steady as possible, and experimental repeatability can

be assumed to be verified throughout the experiment.

Fig. 2 shows the detail of the test section. The ar-

rangements of thermocouples are illustrated with its

coordinate. Let the dimensional coordinates of a cube be

ðx; y; zÞ, and the normalized coordinates as in Fig. 2 be

ðX ; Y ; ZÞ defined as

ðX ; Y ; ZÞ ¼ ðx; y; zÞ
L

: ð1Þ

Here, L is the one side length of the cube, and this is

equal to 50 mm in the present study.
3. Results and discussion

3.1. Experimental data

Fig. 3 shows the dependence of temperature on the

pressure of air. All thermocouples are constructed at

X ¼ 0:5 and Y ¼ 0:5 as shown in Fig. 2. Here, H in Fig.

3 represents the normalized temperature and is defined

as

H ¼ h � hc

hh � hc

: ð2Þ

Accordingly, the normalized temperature H varies from

0 at cold wall to 1 at hot wall. This figure illustrates that

the temperature at each point apparently approaches
some value as the pressure becomes small. Especially

below 6.67 kPa (50.0 mmHg), the distribution seems to

converge to some state. H at the center ðX ; Y ; ZÞ ¼
ð0:5; 0:5; 0:5Þ of the domain is found to be maintained

almost 0.5 during the experiment.

Fig. 4 shows the temperature distribution at each

pressure. The normalized temperature distribution ap-

pears to approach that of conduction state as pressure

decreases. The plane at Z ¼ 0 expresses the hot wall, and

that at Z ¼ 1 stands for the cold wall. This figure also

shows that the temperature at the center of the domain is

kept at H ¼ 0:5 (298.15 K). The almost linear distribu-

tion at low pressure changes due to the convection as the

pressure becomes large.

3.2. Data reduction by Kn

Above experimental data on heat transfer in an en-

closure can be reduced using the dimensionless number

of Rayleigh number (Ra). Ra is defined as
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Fig. 5. Dependence of Ra of air on pressure below atmospheric

pressure. The required air properties are calculated by an esti-

mation software [14] at 298.15 K. Typical length and temper-

ature difference are equal to 50 mm and 30 K, respectively.
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Ra ¼ PrGr; Gr ¼ gbðhh � hcÞL3

m2
; Pr ¼ m

a
: ð3Þ

Here, g is the gravitational acceleration. a, b and m are

the thermal diffusivity, volumetric expansion coefficient

and kinematic viscosity, respectively.

These dimensionless variables are valid for contin-

uum medium, since these are defined with the properties

of a bulk fluid. However, in the present study, air is used

and its pressure is lowered. Accordingly, it is crucial if

the employed air can be assumed continuous or not.

To investigate the degree of discontinuity, the

Knudsen number (Kn) is generally used, and this is de-

fined as follows from kinetic theory and equation of

ideal gas [12],

Kn ¼ k
L
; k ¼ kffiffiffi

2
p

pd2

h
p
: ð4Þ

Here, k, k, d and p are mean free path of fluid molecules,

the Boltzmann constant, diameter of a fluid molecule

and pressure of gas, respectively. For nominally aver-

aged air molecules of dair ¼ 310 pm [13], k can be ex-

pressed as,

k=m ¼ 3:23� 10�5 h=K
p=Pa

: ð5Þ

Here, k, h and p are in the units of m, K and Pa, re-

spectively. Considering the air at h ¼ 298:15 K, the

pressure p from 5.40 kPa (40.5 mmHg) to 99.99 kPa

(750.0 mmHg) gives Kn of 3.57� 10�5–1.93� 10�6.

From the viewpoint of kinetic theory, gas has been as-

sumed continuous if Kn is less than about 0.01. Conse-

quently, air at low density considering in the present

study is ensured to be continuum.

3.3. Data reduction by Ra

Since the air adopted in the present study can be

assumed continuous, Ra can be estimated if some

properties of air at each pressure is obtained. In the

present study, an estimation software [14] was adopted

to calculate the properties included in Ra of Eq. (3) of air
at low pressure. In the calculation using this, air is as-

sumed to have the nominal composition of nitrogen

(78.12 mol%), oxygen (20.96 mol%) and argon (0.92

mol%). Employing this, Ra which depends on the pres-

sure can be predicted. Fig. 5 shows the dependence of Ra
on the pressure using the properties of air confined in a

50 mm cube at h ¼ 298:15 K in case of Dh ¼ 30 K. Ra
varies from about 1.04� 103 to 3.56� 105 corresponding

to the pressure from 5.40 kPa (40.5 mmHg) to 99.99 kPa

(750.0 mmHg). From kinetic theory [12], p is in in-

verse proportion to k as in Eq. (4). Further, k is pro-

portional to both m and a. Consequently, from Eq. (3),

Ra is proportional to the square of p. Fig. 5 supports

this nature. In the above mentioned estimation of
Ra, l, j and b are almost independent of pressure, and

only density increases with pressure. Accordingly, Pr
is almost constant, and both a and m decrease with

pressure. For convenience, these are summarized as

follows to predict Ra of air at 298.15 K below atmo-

spheric pressure which is enclosed in a 50 mm cube

imposed Dh ¼ 30 K.

l ¼ 1:83� 10�5 Pa s; j ¼ 2:60� 10�2 Wm�1 K�1;

b ¼ 3:35–3:36� 10�3 K�1;

Cp ¼ 1:00–1:01� 103 J kg�1 K�1;

q=ðkgm�3Þ ¼ 1:56� 10�3 � ðp=mmHgÞ
¼ 1:17� 10�5 � ðp=PaÞ;

ð6Þ

m ¼ l=q; a ¼ j=ðqCpÞ; Pr ¼ 0:709;

Ra ¼ 6:33� 10�1 � ðp=mmHgÞ2

¼ 3:56� 10�5 � ðp=PaÞ2: ð7Þ

Using Fig. 5, the dependence of temperature on pressure

can be converted to that on Ra, and Figs. 6 and 7 can be

obtained. Fig. 6 is the dependence of normalized tem-

perature on Ra corresponding to Fig. 3. Fig. 7 is the

dependence of normalized temperature distribution on

Ra. This figure was obtained from Fig. 4 by the fifth-

order polynomial fitting at each Ra using seven tem-

peratures including both hot and cold wall temperatures.

The order of this polynomial fitting is crucial to estimate

heat flux. In the present study, this was decided to satisfy

that the calculated temperatures at both walls are the

nearest possible values as the constantly maintained

values, or H ¼ 1 at Z ¼ 0 and H ¼ 0 at Z ¼ 1.



Fig. 7. Dependence of normalized temperature distribution on

Ra. This figure is obtained from Fig. 4 by the fifth-order poly-

nomial fitting at each Ra using seven temperatures including

both wall temperatures. This was decided to satisfy that the

calculated temperatures at both walls are the nearest possible

values as the experimental conditions.

Fig. 8. Dependence of Nu on Ra. Nu is calculated at the center

of the hot and cold walls using the polynomial fitted curves in

Fig. 7.
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Fig. 6. Dependence of normalized temperature on Ra.
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3.4. Data reduction by Nu

Though the temperature distribution at lower pres-

sure approaches that at conduction state, this can be

also illustrated from the viewpoint of heat flux using the

Nusselt number (Nu). Nu is defined as the ratio of heat

flux due to convection to that at conduction state. In

accordance with Fig. 7, in the present study, Nu can be

predicted by use of the following equation at the center

of the hot and cold walls,

Nu ¼
oh
oz

� �
conv

oh
oz

� �
cond

¼
oH
oZ

� �
conv

oH
oZ

� �
cond

¼ � oH
oZ

� �
conv

: ð8Þ
Fig. 8 shows the dependence of Nu on Ra. Nu at the

center of the hot and cold walls can be calculated from

the derivatives of the temperatures using the polynomial

fitted curves at Z ¼ 0 for the hot wall, and Z ¼ 1 for the

cold wall. Nu at both walls are in good agreement at

each Ra within 5%. This result suggests that the heat flux

through the hot wall can be delivered to the cold wall

almost without heat loss in the present experiment.

From this figure, Nu appears to approach unity, or

conduction state as Ra decreases.
4. Conclusion

Temperature distribution of air was measured for

natural convection in a 50 mm cube imposed the tem-

perature difference of 30 K between two opposing ver-

tical walls at the average temperature of 298.15 K under

the decreased pressure less than atmospheric one. Ra
was changed by decreasing the pressure in the range

where the air can be assumed continuous from the

viewpoint of kinetic theory.

The experimentally obtained result illustrates well

that the profiles of temperature distribution and heat

flux approach those at conduction state as pressure or

Ra becomes small. For the pressure from 5.40 kPa (40.5

mmHg) to 99.99 kPa (750.0 mmHg) which gives Ra from
1.04� 103 to 3.56� 105, Nu at the center of the hot and

cold walls is almost less than 5.5 by the fifth-order

polynomial fitted curves of temperature distribution

using seven temperatures at experimentally obtained five

measuring points and both walls.
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